INORGANIC COMPOUNDS

Acta Cryst. (1997). C53, 1165-1166

$\mathrm{Sr}_{2} \mathrm{Fe}_{2} \mathrm{~F}_{10} \cdot \mathrm{H}_{2} \mathrm{O}$, the First Hydrated Strontium Iron(III) Fluoride

Jean-Marc Le Meins, Annie Hemon-Ribaud and Georges Courbion

Laboratoire des Fluorures, URA 449 Faculté des Sciences, Université du Maine, 72017 Le Mans CEDEX, France.
E-mail: le_meins@fluo.univ-lemans.fr
(Received 20 December 1996; accepted 24 March 1997)

Abstract

The structure of strontium iron(III) pentafluoride hemihydrate, obtained by hydrothermal growth, has been determined by single-crystal X-ray diffraction. The structure contains octahedral $\left[\mathrm{FeF}_{5}\right]_{n}$ trans-vertexsharing chains, isolated $\left[\mathrm{FeF}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ octahedra, chains of SrF_{10} polyhedra sharing two opposite faces and SrF_{8} isolated polyhedra.

Comment

During the course of our investigation of the $\mathrm{SrF}_{2}-$ $0.5 \mathrm{Fe}_{2} \mathrm{O}_{3}-\left(\mathrm{HF}\right.$ and/or $\left.\mathrm{H}_{3} \mathrm{PO}_{4}\right)-\mathrm{H}_{2} \mathrm{O}$ system using hightemperature ($T=973 \mathrm{~K}$) hydrothermal growth to synthesize new fluorophosphated compounds, the use of 11 M HF as a solvent led to the new fluorinated compound $\mathrm{Sr}_{2} \mathrm{Fe}_{2} \mathrm{~F}_{10} \cdot \mathrm{H}_{2} \mathrm{O}$.

The structure contains two types of $\mathrm{Fe}^{\mathrm{III}}$ octahedra. Each FelF_{6} octahedron shares two of its opposite corners with two other FelF_{6} octahedra to form parallel $\left[\mathrm{FeF}_{5}\right]_{n}$ trans chains running along [100], whereas the [$\left.\mathrm{Fe} 2 \mathrm{~F}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ octahedra are isolated. The FelF_{6} octahedra are distorted, with the longest $\mathrm{Fel}-\mathrm{F}$ distances [2.008 (1) \AA] involving the shared F6 atoms and the mean $\mathrm{Fe}-\mathrm{F}$ distance being very close to the sum of the ionic radii (Shannon, 1976). Within these chains, the $\mathrm{Fe}-\mathrm{F} 6-\mathrm{Fe}$ angle is reduced to $155.4(2)^{\circ}$. The presence of a water molecule in the $\left[\mathrm{Fe} 2 \mathrm{~F}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ octahedra was confirmed by a valence bond analysis (Brown, 1981). A peak in a general position was observed $1.06 \AA$ from O 1 in a difference Fourier map and was assigned as an H atom.
There are two types of Sr polyhedra. The SrlF_{10} (bicapped cube) polyhedra share two opposite faces to form parallel linear chains running along [100]. Each chain is connected to one $\left[\mathrm{FeF}_{5}\right]_{n}$ chain by one edge shared between an Srl polyhedron and an Fel octahedron. Between these double chains $\mathrm{Sr}_{2} \mathrm{~F}_{8}$ polyhedra (square antiprism) are inserted. These share two opposite corners with Fe 2 octahedra to form zigzag chains along [100]. Among the hydrated metal fluorides con-
taining $\left[M^{111} \mathrm{~F}_{x}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6-x}\right]^{n-}$ octahedra, $\mathrm{Sr}_{2} \mathrm{Fe}_{2} \mathrm{~F}_{10} \cdot \mathrm{H}_{2} \mathrm{O}$ is the first structure which exhibits octahedral $\left[\mathrm{FeF}_{5}\right]_{n}$ trans chains with isolated $\left[\mathrm{FeF}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ octahedra.

Fig. I. A perspective view of $\mathrm{Sr}_{2} \mathrm{Fe}_{2} \mathrm{~F}_{10} \cdot \mathrm{H}_{2} \mathrm{O}$, showing the $\left[\mathrm{FeF}_{5} \ln \right.$ chains and $\left[\mathrm{FeF}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ isolated octahedra.

Experimental

Single crystals of $\mathrm{Sr}_{2} \mathrm{Fe}_{2} \mathrm{~F}_{10} \cdot \mathrm{H}_{2} \mathrm{O}$ were obtained by heating a mixture of $\mathrm{SrF}_{2}(2.03 \mathrm{mmol}), \mathrm{Fe}_{2} \mathrm{O}_{3}(1.01 \mathrm{mmol})$ and 2 ml of $11 M \mathrm{HF}$ under hydrothermal conditions ($T=973 \mathrm{~K}, P=$ $180 \mathrm{MPa})$. A crystal was chosen for X-ray analysis by optical examination and its quality was tested with Laue photography.

Crystal data

$\mathrm{Sr}_{2} \mathrm{Fe}_{2} \mathrm{~F}_{10} . \mathrm{H}_{2} \mathrm{O}$
$M_{r}=494.93$
Orthorhombic
Cmea
$a=7.848$ (2) \AA
$b=19.867$ (4) \AA
$c=10.773(3) \AA$
$V=1679.7(7) \AA^{3}$
$Z=8$
$D_{x}=3.914 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Stoe-Siemens AED-2 diffractometer
Profile data from ω / θ scans Absorption correction: Gaussian by integration $T_{\text {min }}=0.13, T_{\text {max }}=0.45$
1844 measured reflections 1741 independent reflections

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 38
reflections
$\theta=14.02-15.90^{\circ}$
$\mu=16.163 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate
$0.190 \times 0.128 \times 0.048 \mathrm{~mm}$
Colourless
$R_{\text {int }}=0.0157$
$\theta_{\text {max }}=35^{\circ}$
$h=-12 \rightarrow 12$
$k=-2 \rightarrow 32$
$l=0 \rightarrow 17$
3 standard reflections frequency: 60 min intensity decay: 3.1%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.075$
$S=1.024$
1741 reflections
83 parameters
Only coordinates of H atom refined

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0306 P)^{2}\right] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=1.12 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-1.43 \mathrm{e} \AA^{-3} \\
\text { Extinction correction: none } \\
\text { Scattering factors from } \\
\text { International Tables for } \\
\text { Crystallography (Vol. } \mathrm{C} \text {) }
\end{gathered}
$$

Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Stoe \& Cie (1988a). DIF4. Diffractometer Control Program. Version 6.2. Stoe \& Cie, Darmstadt, Germany.

Stoe \& Cie (1988b). REDU4. Data Reduction Program. Version 6.2. Stoe \& Cie, Darmstadt, Germany.

Acta Cryst. (1997). C53, 1166-1170

A Tricapped Trigonal Prismatic EuO($\left.\mathbf{H}_{2} \mathrm{O}\right)_{8}$ Site in Trihydrogen Tris(octaaquaeuropium) Dipotassium Digermanohexatitanooctadeca-tungstate(14-) Tridecahydrate

Moriyasu Sugeta and Toshiniro Yamase
Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta Midori-ku, Yokohama 226,
Japan. E-mail: tyamase@res.titech.ac.jp

(Received 2I May 1996; accepted I8 February 1997)

Abstract

This paper reports the first observation of a tricapped trigonal prismatic $\mathrm{EuO}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}$ site containing one anion O and eight aqua O atoms in $\mathrm{K}_{2}\left[\mathrm{Eu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]_{3} \mathrm{H}_{3}\left[\left(\mathrm{GeTi}_{3} \mathrm{~W}_{9} \mathrm{O}_{37}\right)_{2} \mathrm{O}_{3}\right] .13 \mathrm{H}_{2} \mathrm{O}$. Each half of the $\left[\left(\mathrm{GeTi}_{3} \mathrm{~W}_{9} \mathrm{O}_{37}\right)_{2} \mathrm{O}_{3}\right]^{14-}$ anion, which exhibits almost the same structure as the anion in $\mathrm{K}_{9} \mathrm{H}_{5}\left[\left(\mathrm{GeTi}_{3} \mathrm{~W}_{9} \mathrm{O}_{37}\right)_{2} \mathrm{O}_{3}\right] \cdot 16 \mathrm{H}_{2} \mathrm{O}$, is coordinated by either three Eu^{3+} or two K^{+}atoms.

Comment

During the course of our studies of the crystal structures of photoluminescent polyoxometalloeuropates, the crystal fields of the Eu^{3+} sites in the polyoxotungstoeuropates and polyoxomolybdoeuropates have been characterized as a square antiprism and tricapped trigonal prism, respectively. $\mathrm{Na}_{9}\left[\mathrm{EuW}_{10} \mathrm{O}_{36}\right] \cdot 32 \mathrm{H}_{2} \mathrm{O}$ (Sugeta \& Yamase, 1993) and $\mathrm{K}_{15} \mathrm{H}_{3}\left[\mathrm{Eu}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{~W}_{5} \mathrm{O}_{18}\right)_{3}\left(\mathrm{SbW}_{9} \mathrm{O}_{33}\right)\right] .37 \mathrm{H}_{2} \mathrm{O}$ (Yamase, Naruke \& Sasaki, 1990) have square antiprismatic EuO_{8} and $\mathrm{EuO}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ sites, respectively. $\left(\mathrm{NH}_{4}\right)_{12} \mathrm{H}_{2}\left[\mathrm{Eu}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{16}\left(\mathrm{MoO}_{4}\right)\left(\mathrm{Mo}_{7} \mathrm{O}_{24}\right)_{4}\right] .13 \mathrm{H}_{2} \mathrm{O}(\mathrm{Nar}-$ uke, Ozeki \& Yamase, 1991) and $\mathrm{Eu}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{12}\left(\mathrm{Mo}_{8} \mathrm{O}_{27}\right)$.$6 \mathrm{H}_{2} \mathrm{O}$ (Yamase \& Naruke. 1991) have tricapped trigonal prismatic $\mathrm{EuO}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ and $\mathrm{EuO}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ sites, respectively. It has recently been found that $\mathrm{Na}_{7} \mathrm{H}_{19}\left\{\left[\mathrm{Eu}_{3} \mathrm{O}(\mathrm{OH})_{3}\left(\mathrm{OH}_{2}\right)_{3}\right]_{2} \mathrm{Al}_{2}\left(\mathrm{Nb}_{6} \mathrm{O}_{19}\right)_{5}\right\}$ has bi-

