Acta Cryst. (1997). C53, 1165-1166

Sr₂Fe₂F₁₀.H₂O, the First Hydrated Strontium Iron(III) Fluoride

JEAN-MARC LE MEINS, ANNIE HEMON-RIBAUD AND GEORGES COURBION

Laboratoire des Fluorures, URA 449 Faculté des Sciences, Université du Maine, 72017 Le Mans CEDEX, France. E-mail: le_meins@fluo.univ-lemans.fr

(Received 20 December 1996; accepted 24 March 1997)

Abstract

The structure of strontium iron(III) pentafluoride hemihydrate, obtained by hydrothermal growth, has been determined by single-crystal X-ray diffraction. The structure contains octahedral $[FeF_5]_n$ trans-vertexsharing chains, isolated $[FeF_5(H_2O)]$ octahedra, chains of SrF_{10} polyhedra sharing two opposite faces and SrF_8 isolated polyhedra.

Comment

During the course of our investigation of the SrF_{2-} 0.5Fe₂O₃-(HF and/or H₃PO₄)-H₂O system using hightemperature (T = 973 K) hydrothermal growth to synthesize new fluorophosphated compounds, the use of 11 *M* HF as a solvent led to the new fluorinated compound $Sr_2Fe_2F_{10}$.H₂O.

The structure contains two types of Fe^{III} octahedra. Each Fe1F₆ octahedron shares two of its opposite corners with two other Fe1F₆ octahedra to form parallel [FeF₅]_n trans chains running along [100], whereas the [Fe2F₅(H₂O)] octahedra are isolated. The Fe1F₆ octahedra are distorted, with the longest Fe1—F distances [2.008 (1) Å] involving the shared F6 atoms and the mean Fe—F distance being very close to the sum of the ionic radii (Shannon, 1976). Within these chains, the Fe—F6—Fe angle is reduced to 155.4 (2)°. The presence of a water molecule in the [Fe2F₅(H₂O)] octahedra was confirmed by a valence bond analysis (Brown, 1981). A peak in a general position was observed 1.06 Å from O1 in a difference Fourier map and was assigned as an H atom.

There are two types of Sr polyhedra. The $Sr1F_{10}$ (bicapped cube) polyhedra share two opposite faces to form parallel linear chains running along [100]. Each chain is connected to one $[FeF_5]_n$ chain by one edge shared between an Sr1 polyhedron and an Fe1 octahedron. Between these double chains $Sr2F_8$ polyhedra (square antiprism) are inserted. These share two opposite corners with Fe2 octahedra to form zigzag chains along [100]. Among the hydrated metal fluorides con-

© 1997 International Union of Crystallography Printed in Great Britain – all rights reserved taining $[M^{III}F_x(H_2O)_{6-x}]^{n-}$ octahedra, $Sr_2Fe_2F_{10}.H_2O$ is the first structure which exhibits octahedral $[FeF_5]_n$ *trans* chains with isolated $[FeF_5(H_2O)]$ octahedra.

Fig. 1. A perspective view of Sr₂Fe₂F₁₀.H₂O, showing the [FeF₅]_n chains and [FeF₅(H₂O)] isolated octahedra.

Experimental

Single crystals of $Sr_2Fe_2F_{10}$.H₂O were obtained by heating a mixture of SrF_2 (2.03 mmol), Fe_2O_3 (1.01 mmol) and 2 ml of 11 *M* HF under hydrothermal conditions (*T* = 973 K, *P* = 180 MPa). A crystal was chosen for X-ray analysis by optical examination and its quality was tested with Laue photography.

Crystal data

$Sr_2Fe_2F_{10}H_2O$	Mo $K\alpha$ radiation
$M_r = 494.93$	$\lambda = 0.71073 \text{ Å}$
Orthorhombic	Cell parameters from 38
Cmca	reflections
a = 7.848 (2) Å	$\theta = 14.02 - 15.90^{\circ}$
b = 19.867 (4) Å	$\mu = 16.163 \text{ mm}^{-1}$
c = 10.773 (3) Å	T = 293 (2) K
$V = 1679.7 (7) \text{ Å}^3$	Plate
Z = 8	$0.190 \times 0.128 \times 0.048 \text{ mm}$
$D_x = 3.914 \text{ Mg m}^{-3}$	Colourless
D _m not measured	

Data collection

Stoe-Siemens AED-2
diffractometer $R_{int} = 0.0157$
 $\theta_{max} = 35^{\circ}$ Profile data from ω/θ scans
Absorption correction:
Gaussian by integration
 $T_{min} = 0.13, T_{max} = 0.45$ $h = -12 \rightarrow 12$
 $k = -2 \rightarrow 32$
 $l = 0 \rightarrow 17$
3 standard reflections
frequency: 60 min

1741 independent reflections

intensity decay: 3.1%

Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.075$ S = 1.024 1741 reflections 83 parameters Only coordinates of H atom	$w = 1/[\sigma^2(F_o^2) + (0.0306P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 1.12$ e Å ⁻³ $\Delta\rho_{min} = -1.43$ e Å ⁻³ Extinction correction: none Scattering factors from
refined	International Tables for Crystallography (Vol. C)

Table 1. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

 $U_{\rm iso}$ for H atom, $U_{\rm eq} = (1/3) \sum_i \sum_j U^{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j$ for all others.

	x	у	z	$U_{\rm iso}/U_{\rm eq}$
Srl	1/4	0.28088 (2)	1/4	0.00975 (11
Sr2	0	0.11917 (3)	0.45274 (5)	0.00814 (10
Fel	1/4	0.46627 (4)	1/4	0.00809 (15
Fe2	0	0.18264 (4)	0.06392 (8)	0.0078 (2)
F1	0.1994 (3)	0.39572(11)	0.1356 (2)	0.0137 (5)
F2	0.2403 (3)	0.18836(11)	0.0780 (2)	0.0144 (5)
F3	0.2919 (3)	0.03352 (11)	0.1268 (3)	0.0189 (5)
F4	0	0.3010 (2)	0.3880 (3)	0.0133 (7)
F5	0	0.1800(2)	0.2468 (4)	0.0164 (7)
F6	0	0.4704 (2)	0.2890 (4)	0.0156(7)
F7	0	0.28067 (15)	0.1019(3)	0.0103 (6)
01	0	0.0841 (2)	0.0472 (4)	0.0140 (8)
HI	0.098 (3)	0.0527 (19)	0.083 (4)	0.013

Table 2. Selected geometric parameters (Å, °)

	•	-				
$r_1-F_4 \times 2$	2.494 (2)	$Fe1 - F1 \times 2$	1.908 (2)			
$r1-F7 \times 2$	2.529 (2)	$Fe1 - F3^{iv} \times 2$	1.912 (2)			
$Sr1-F2 \times 2$	2.611 (2)	$Fe1-F6 \times 2$	2.008 (1)			
$Sr1 - F1 \times 2$	2.623 (2)	$Fe2 - F2 \times 2$	1.896 (3)			
$r_{1-F5 \times 2}$	2.805 (3)	Fe2—F4 ^v	1.923 (4)			
$Sr2-F2^i \times 2$	2.480(3)	Fe2—O1	1.965 (4)			
$r_2 = F_3^i \times 2$	2.509(2)	Fe2F5	1.970 (4)			
Sr2F5	2.527 (4)	Fe2—F7	1.990 (3)			
$r_{F1^{ii}} \times 2$	2.533 (3)	O1—H1	1.07 (3)			
Sr2—F7 ⁱⁱⁱ	2.557 (3)					
Fe1 ^{vi} —F6—Fe1	155.4 (2)	H1 ^{vii} 01H1	92.8 (4)			
Symmetry codes: (i) $\frac{1}{2} - x$, y , $\frac{1}{2} - z$; (ii) x , $\frac{1}{2} - y$, $\frac{1}{2} + z$; (iii) $-x$, $\frac{1}{2} - y$, $\frac{1}{2} + z$;						
$(iv) x, \frac{1}{2} + y, \frac{1}{2} - z; (v) - x, \frac{1}{2} - y, z - \frac{1}{2}; (vi) x - \frac{1}{2}, y, \frac{1}{2} - z; (vii) - x, y, z.$						

The maximum residual electron density was found 1.0 Å from Sr1.

Data collection: DIF4 (Stoe & Cie, 1988a). Cell refinement: DIF4. Data reduction: REDU4 (Stoe & Cie, 1988b). Program(s) used to solve structure: SHELXS86 option PATT (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: DIAMOND (Bergerhoff, 1996).

The authors thank Professor M. Leblanc (Université du Maine) for his help in data collection.

References

- Bergerhoff, G. (1996). DIAMOND. A Visual Crystal Structure Information System. Gerhard-Domagk-Strasse, 53121 Bonn, Germany. Brown, I. D. (1981). The Bond Valence Method, Vol. 2, edited by M.
- O'Keeffe & A. Navrotsky, pp. 1–30. New York: Academic Press.

Shannon, R. D. (1976). Acta Cryst. A32, 751-767.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Stoe & Cie (1988a). DIF4. Diffractometer Control Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1988b). *REDU4. Data Reduction Program.* Version 6.2. Stoe & Cie, Darmstadt, Germany.

Acta Cryst. (1997). C53, 1166-1170

A Tricapped Trigonal Prismatic EuO(H₂O)₈ Site in Trihydrogen Tris(octaaquaeuropium) Dipotassium Digermanohexatitanooctadecatungstate(14–) Tridecahydrate

MORIYASU SUGETA AND TOSHIHIRO YAMASE

Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta Midori-ku, Yokohama 226, Japan. E-mail: tyamase@res.titech.ac.jp

(Received 21 May 1996; accepted 18 February 1997)

Abstract

This paper reports the first observation of a tricapped trigonal prismatic $EuO(H_2O)_8$ site containing one anion O and eight aqua O atoms in $K_2[Eu(H_2O)_8]_3H_3[(GeTi_3W_9O_{37})_2O_3].13H_2O$. Each half of the $[(GeTi_3W_9O_{37})_2O_3]^{14-}$ anion, which exhibits almost the same structure as the anion in $K_9H_5[(GeTi_3W_9O_{37})_2O_3].16H_2O$, is coordinated by either three Eu³⁺ or two K⁺ atoms.

Comment

During the course of our studies of the crystal structures of photoluminescent polyoxometalloeuropates, the crystal fields of the Eu^{3+} sites in the polyoxotungstoeuropates and polyoxomolybdoeuropates have been characterized as a square antiprism and tricapped trigonal prism, respectively. Na₉[EuW₁₀O₃₆].32H₂O (Sugeta & Yamase, 1993) and K₁₅H₃[Eu₃(H₂O)₃(W₅O₁₈)₃(SbW₉O₃₃)].37H₂O (Yamase, Naruke & Sasaki, 1990) have square antiprismatic EuO_8 and $EuO_6(H_2O_2)$ sites, respectively. $(NH_4)_{12}H_2[Eu_4(H_2O)_{16}(MoO_4)(Mo_7O_{24})_4].13H_2O$ (Naruke, Ozeki & Yamase, 1991) and Eu₂(H₂O)₁₂(Mo₈O₂₇).-6H₂O (Yamase & Naruke. 1991) have tricapped trigonal prismatic $EuO_5(H_2O)_4$ and $EuO_3(H_2O)_6$ sites, respectively. It has recently been found that $Na_7H_{19}{[Eu_3O(OH)_3(OH_2)_3]_2Al_2(Nb_6O_{19})_5}$ has bi-

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1176). Services for accessing these data are described at the back of the journal.